
Fall’2016 Semester 
METR 3113 – Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics 

Lecture 27. October 31, 2016 

Topics: Scale analysis of the equations of horizontal motion. Geostrophic approximation and geostrophic wind. 

Scaling the third equation of motion (equation of vertical motion). Geostrophic approximation and 

geostrophic wind. Approximate forms of horizontal prognostic equations. Rossby number. Hydrostatic 

approximation. Pressure and density deviations from hydrostatic values. 

Reading: Section 1.6 and Chapter 2 in Holton and Hakim. 

1. Scale analysis of the equations of horizontal motion 

General equations of motion (also called the momentum balance equations) derived in Class 27 describe 

atmospheric motions on a very large range of scales. The importance of particular scales of motion may be 

estimated through the analyses of magnitudes of terms in the scaled equations of motion. Motions of some 

scales can be unimportant for a given problem and thus can be excluded from consideration (filtered out, 

dropped off) by elimination of the corresponding terms in the equations of motion. The notions of scale analysis 

and scaling in atmospheric dynamics were briefly discussed in Class 2. 

Let us consider characteristic scales of atmospheric motion related to a mid-latitude synoptic system: 

 L~ 310 km= 610 m is the length scale; 

 H~ 410 km = 10  m  is the depth scale; 

 U~ -110 m s  is the horizontal velocity scale; 

 W~ -1 -2 -11 cm s 10  m s  is the vertical velocity scale; 

 L/U~ 510  s  is the time scale; 

 3 2 -2/ 10  m  sp   is the (normalized) horizontal pressure fluctuation scale. 

Now we can estimate the magnitude of each term in the first two equations of motion using the introduced 

scales. For 45    (exactly the mid-latitude): 4 -1

0 2 sin 2 cos 10 sf       . 

The resulting scale estimates for the terms (all in -2m s ) of the horizontal (in X and Y directions) equations 

of motion (see Class 27): 
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2. Scaling the third equation of motion (equation of vertical motion) 

The third equation of motion (it presents the balance of forces along Z axis, see Class 27) reads: 
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We may now evaluate individual magnitudes of terms of this equation for a synoptic-scale motion in mid-

latitudes using a scaling approach similar to the one applied to analysis of terms in the equations of the 

horizontal motion (see p. 1). 

To do this, we again consider characteristic scales of such atmospheric motion: 

 L~ 310 km= 610 m is the length scale; 

 H~ 410 km = 10  m  is the depth scale; 

 U~ -110 m s  is the horizontal velocity scale; 

 W~ -1 -2 -11 cm s 10  m s  is the vertical velocity scale; 

 3 5 -2

0 10  hPa 10  N mP   is the scale of vertical pressure difference across the atmosphere; 

 4 -1

0 2 sin 2 cos 10 sf        (taking 45   ), 

and use these scales for the estimation of the terms of the above equation. 

The following estimates of individual terms (all in -2m s ) may be obtained. 
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3. Geostrophic approximation and geostrophic wind 

Scaling considerations presented in p. 1 regarding the first two equations of motion 
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demonstrated that the main terms in these equations – when applied to describe the synoptic-scale motion in 

mid-latitudes – are the pressure gradient terms, 
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and the Coriolis terms, 

2 sinv   and 2 sinu   . 

If only these major terms are kept in the equations of the horizontal motion, they reduce to 

1 p
fv

x


  


, 

1 p
fu

y


 


, 

where f= 2 sin  is the already familiar Coriolis parameter. 

The above approximate form of the equations of horizontal motion corresponds to the so-called geostrophic 

approximation. The atmospheric horizontal motion (wind) under this assumption is called the geostrophic wind, 

whose vector gV  (note that it has only horizontal components!) is given by 
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are the x and y components of the geostrophic wind. 

Using properties of the vector product, the geostrophic wind vector can be written in the form: 

1
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where del operator is applied on the horizontal (X-Y) plane, and therefore the pressure gradient is given by 
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i j . Please be able to derive the above formula for gV  using properties of the vector cross product. 

Geostrophic approximation works rather well for large-scale horizontal motions away from the equator and 

sufficiently high above the ground. 

4. Approximate forms of horizontal prognostic equations. 

Geostrophic approximation allows to rewrite the horizontal pressure gradient force components 
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If we take the equations of the horizontal motion with retained acceleration terms (these terms are the next 

to the pressure gradient and Coriolis terms with respect to the magnitude, see the scale analysis in p. 1), we may 

write them down as the following prognostic equations for the horizontal wind components: 
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Thus, the horizontal acceleration on the synoptic scales of motion is proportional to the difference between 

the actual and geostrophic wind (the so-called ageostrophic wind). In vector form, these prognostic equations 

for horizontal motion may be written (please be able to show it yourself) as one equation: 
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where u v V i j  is the horizontal velocity vector and aV  is the ageostrophic wind vector with components 

gu u  (in x direction) and gv v  (in y direction). 

5. Rossby number 

The Rossby number Ro  is introduced in atmospheric dynamics as convenient measure of the magnitude of the 

horizontal acceleration compared to the action of the Coriolis force. Calculating the ratio of scales introduced in 

p. 1 for the horizontal acceleration, 
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L
, and for the Coriolis force per unit mass, 0f U , we have: 
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The small values of Ro (Ro<<1) indicate that the magnitude of acceleration is small compared to the magnitude 

of the Coriolis force per unit mass, and thus the geostrophic approximation is valid. 

6. Hydrostatic approximation 

Scale analysis of the third equation of motion (see p. 2) indicates that to a high degree of accuracy the pressure 

field in the atmosphere on synoptic scales of motion is in the hydrostatic equilibrium that corresponds to the 

state when the vertical component of the pressure gradient force is balanced by the gravity force. 

The pressure rp  and density r  in the idealized hydrostatic atmosphere (they are also called the standard 

pressure and the standard density) are thus related by the hydrostatic balance equation: 
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which provides the hydrostatic approximation of the third equation of motion. 



7. Deviations from the hydrostatic equilibrium 

It is convenient to consider actual pressure and density fields in the atmosphere, ( , , , )p x y z t  and ( , , , )x y z t , in 

terms of small deviations '( , , , )p x y z t  and '( , , , )x y z t  from their standard (related to each other through the 

hydrostatic balance and depending on z only) values ( )rp z  and ( )r z , i.e., in the form: 
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For synoptic-scale motions, taking 
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appears to be a reasonable approximation for the relation between pressure and density perturbation fields in 

this case. 


